A eukaryotic nicotinate-inducible gene cluster: convergent evolution in fungi and bacteria
نویسندگان
چکیده
Nicotinate degradation has hitherto been elucidated only in bacteria. In the ascomycete Aspergillus nidulans, six loci, hxnS/AN9178 encoding the molybdenum cofactor-containing nicotinate hydroxylase, AN11197 encoding a Cys2/His2 zinc finger regulator HxnR, together with AN11196/hxnZ, AN11188/hxnY, AN11189/hxnP and AN9177/hxnT, are clustered and stringently co-induced by a nicotinate derivative and subject to nitrogen metabolite repression mediated by the GATA factor AreA. These genes are strictly co-regulated by HxnR. Within the hxnR gene, constitutive mutations map in two discrete regions. Aspergillus nidulans is capable of using nicotinate and its oxidation products 6-hydroxynicotinic acid and 2,5-dihydroxypyridine as sole nitrogen sources in an HxnR-dependent way. HxnS is highly similar to HxA, the canonical xanthine dehydrogenase (XDH), and has originated by gene duplication, preceding the origin of the Pezizomycotina. This cluster is conserved with some variations throughout the Aspergillaceae. Our results imply that a fungal pathway has arisen independently from bacterial ones. Significantly, the neo-functionalization of XDH into nicotinate hydroxylase has occurred independently from analogous events in bacteria. This work describes for the first time a gene cluster involved in nicotinate catabolism in a eukaryote and has relevance for the formation and evolution of co-regulated primary metabolic gene clusters and the microbial degradation of N-heterocyclic compounds.
منابع مشابه
Convergent Evolution: Gene Sharing by Eukaryotic Plant Pathogens
Oomycetes and filamentous parasitic fungi are plant pathogens that have undergone convergent evolution. A recent study has shown that these microbial eukaryotes have exchanged metabolic genes, which might explain some of their phenotypic similarities.
متن کاملEvolution of Filamentous Plant Pathogens: Gene Exchange across Eukaryotic Kingdoms
Filamentous fungi and oomycetes are eukaryotic microorganisms that grow by producing networks of thread-like hyphae, which secrete enzymes to break down complex nutrients, such as wood and plant material, and recover the resulting simple sugars and amino acids by osmotrophy. These organisms are extremely similar in both appearance and lifestyle and include some of the most economically importan...
متن کاملEvolution of bopA Gene in Burkholderia: A Case of Convergent Evolution as a Mechanism for Bacterial Autophagy Evasion
Autophagy is an important defense mechanism targeting intracellular bacteria to restrict their survival and growth. On the other hand, several intracellular pathogens have developed an antiautophagy mechanism to facilitate their own replication or intracellular survival. Up to now, no information about the origin or evolution of the antiautophagic genes in bacteria is available. BopA is an effe...
متن کاملPlant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.
Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In sever...
متن کاملMolecular Characterization of a Squalene epoxidase Gene in Dermatophyte Pathogen Trichophyton tonsurans
Background: Trichophyton tonsurans is one of the dermatophyte fungi which invades the skin and hair of human. Several properties of this fungus have been investigated so far. However a few studies were carried out in the field of molecular biology of this fungus. In the present study, we tried to identify the Squalene epoxidase gene which is related to synthesis of ergosterol in this fungus. Me...
متن کامل